

James Frakes Co-founder



Conserving stream insects through monitoring, research, preventative management, and sound restoration

Jackson H. Birrell May 18, 2024

3,500 species

## Mayfly





3,500 species

## Stonefly





17,000 species

## Caddisfly





50,000 species

### **True flies**





### 5,000 species

### Beetles



### Dragonfly





6,000 species







### Photos by Joe Giersch, USGS

### Over 70% of freshwater animals are insects



Dijkstra et al. 2013







### Patagonia: 'No Fly Zones'



We've lost



What does it mean for the rest of life on Earth?



INCOLUCION | BIOLOGICAL SCIENCIE | 0

Insect decline in the Anthropocene: Death by a thousand cuts

David L. Wagner 🗢 🛤, Eliza M. Grames 🗣. Matchew L. Foriore 🗣, 🤖 and David Stanisk Authors Infe & Attiliations January 11, 2021 | 118 (2) e303399118 | https://doi.org/10.1073/vorus.2023993118



### Dude, Where's My Hatch?

#### Stephen Sautner / May 31, 2023 / 10 Min Read / Fly Fishing

The decline of aquatic insects should bug everyone.

### Insect Declines in the Anthropocene

Annual Review of Entomology Vol. 55457-480 (Volume publication date January 2020) First published as a Review in Advance on October 14, 2019 Https://doi.org/10.1146/janurev-ento-01.1019-025151

#### David L. Wagner

Department of Ecology and Evolutionary Biology, University of Connecticut, Storm, Connecticut 06269, USA; email: david.wagner@uconn.edu

f ¥ in 🖸 🔔

### What happened to Utah's salmonfly?

By Robert Williamson for KSL.com | Posted - July 27, 2021 at 8:10 p.m.



### The Washington Post



The World's Oldest Winged Insect Is in Trouble. How Frightened Should We Be?

Mayflies are among nature's best environmental sentinels — and their current message to us is grim

> By Robert O'Harrow Jr. September 19, 2022 at 10:03 a.m. 621



Contents lists available at ScienceDirect

**Biological Conservation** 

journal homepage: www.elsevier.com/locate/biocon

Perspective

Scientists' warning to humanity on insect extinctions



BIOLOGICAL



### SALMONFLY QUESTIONS

What's happening to our favorite hatch?

By Beau Davis

### More than 75 percent decline over 27 years in total flying insect biomass in protected areas

Caspar A. Hallmann 🗃, Martin Sorg, Eelke Jongejans, Henk Siepel, Nick Hofland, Heinz Schwan, Werner Stenmans, Andreas Müller, Hubert Sumser, Thomas Hörren, Dave Goulson, Hans de Kroon

Published: October 18, 2017 • https://doi.org/10.1371/journal.pone.0185809

76% decline in flying insects in protected lands in Germany over 27 years.



### Limited aquatic data data shows strong declines

CONSERVATION BIOLOGY AND BIODIVERSITY

Just How Imperiled Are Aquatic Insects? A Case Study of Stoneflies (Plecoptera) in Illinois









Listing Status: Threatened



Where Listed: WHEREVER FOUND

### Giant salmonfly declines

# Declines or extinctions in at least 10 famous Western trout streams





Stagliano 2010; Birrell et al. 2019; Benzel 2016; Nehring et al. 2011; Colburn 1985; Williamson 2021; Vinson 2011

Where is the action?















# Historical data comparisons Citizen science observations New monitoring programs











# Historical data comparisons Citizen science observations New monitoring programs











### **Historical databases**

**Fraley 1978**: MSU Ms Thesis; 1976 survey of Madison River insects – 5 sites

**DEQ 2006-2014**: 3 additional sites on the upper River

GEORGE S. AND DOLORES DORÉ ECCLES f o u n d a t i o n

### Fraley 1978 – a rare historical dataset of insect and environmental data

### Insect community data

1976 1977 Annual 2 Sampling date 10/8 11/6 12/13/16 4/16 5/14 6/16 7/17 8/17 9/21 Maan Taxoa Plecostera Pteronaroys californica 3 1 7 з 5 2 (0-5)(3-3)(0-2)(0-3)(0-1)(4-8)(2-7)(1-3)Classesnia sabulosa - -1 3 1 2 . <1 2 -(0-2)(2-3)(0-2)(1-3)(1-2)Hesperoperla pacifica <1 <1 <2 1 --(0-1)Isoperla app. 2 1 2 4 6 1 (2-8)(2-2)(0-1)(0-2)(1-3)(2-13)Cultus tostomus <1 <1 ------Skuala parallela 2 1 <2 -<1 <2 Alloperla spp. ---10 8 5 5 Total Plecoptera 8 з 1 2 5 4 (0-2)(1-3)(3-9)(6-17)(7-8)(1-8)(3-7)(2-5)(7-8)(2-5)Ephemeroptera Ephenerella inermie 4 6 2 13 71 6 17 2 18 6 (2-6)(4-8)(1-3)(9-20)(42 - 93)(4-8)(11-34) (0-4)(3-8)26 17 Ephemerella grandis 1 1 <1 <1 1 1 -5 (0-2)(0-1)(0-2)(12-22)(5-49)(0-1)23 22 35 24 Bastis intermedius 3 8 1 6 12 1 (6-48)(14-34)(4-18)(0-4)(0-4)(20-58) (15 - 38)(2-10)(1-3)Pauadoolaon admandat <1 <1 <1 2 1 <1 (2-2)(0-1)Paraleptophlebia heteronea <1 1 <2 (0-1)Reptagenia elegantula <2 <1 Mithrogena undulata 1 <1 <2 (0-2)<1 <1 <1 Брёсты ар. --9 Tricorythodas minutus 2 1 -(3-25)(2-3)z Ameletus sp. <1 1 -<2 -(0-3)(1-3)Unidentified species 1 <2 -(0-1)28 26 22 93 65 29 **Total Ephemeroptera** 21 30 (5-8)(12-56)(19 - 38)(16-35)(62-119) (10-31) (26-130) (18-42) (2-10)(5-11)

Temperatures, flows, etc.



### Fraley 1978 – a rare historical dataset of insect and environmental data

#### Insect community data Temperatures, flows, etc. **STATION** Sampling date 10/8 12/1Pteronarcys californica 3 By comparing datasets, we will identify: 2 Cultus tostonus 1. Insect status and trends ----Alloperla spp. Total Plecoptera 8 3 - 6 4 6 2. Changes in environmental conditions (3-8)Ephemerella grandis 3 Psusdocleon admindsi 3. Drivers of insect declines. Paraleptophlebia heteronea Rhithrogena undulata Epéorus sp. Tricorythodas minutus Ameletus sp. 2 Unidentified species 1 65

### Fraley 1978 – a rare historical dataset of insect and environmental data

### Insect community data

Temperatures, flows, etc.

|                                       |            | 1976        |               |                                  | 1977 Annual                                           |                | 51/      |
|---------------------------------------|------------|-------------|---------------|----------------------------------|-------------------------------------------------------|----------------|----------|
| Taxon Sampling date                   | 10/8       | 11/6        | 12/1          |                                  |                                                       |                |          |
| Plecoptera<br>Pteronarcys californica | 3          | 1           | ,             |                                  |                                                       |                |          |
| Claassenia sabulosa                   | -          | -           |               |                                  | Preliminary data com                                  | narisons       |          |
| Hesperoperla pacífica                 | 1          | -           | ~ .           |                                  | r remininary data con                                 | iparisons      |          |
| Teoperia spp.                         | (2-2)      | (0-1)       | (0-2)         |                                  |                                                       |                |          |
| Skvala parallela<br>Allóperla spp.    | 2          | 1           | -             | Index Score                      | Pollution level                                       | Site           | Date     |
| Total Plecoptera                      | 8<br>(7-8) | 3<br>(2-5)  | (0-2)         | 3.3                              | Slight pollution                                      | 3              | 1977     |
| Ephemerolia insemis                   | 6<br>(3-8) | 4           | 6<br>(4-8)    | 2.6                              | Non-impaired                                          | 4              | 1977     |
| Ephemerella grandis                   | 1 (0-2)    | 1 (0-1)     | <1            | 5.0                              | Fairly significant pollution                          | 3              | 2022     |
| Bastis intermedius                    | -          | 3 (1-3)     | (6-48)        | 12                               | Moderate pollution                                    | /              | 2022     |
| Psusdocleon edmondsi                  | -          | <1          | <1            | 4.2                              |                                                       | 4              | 2022     |
| Paraleptophlebia heteronea            | -          | -           |               |                                  |                                                       |                |          |
| Rhithrogena undulata                  | 2          | _           | -             | • M                              | ean annual water temperature                          | e > 1.2 °C sin | ice 1977 |
| Epêorus sp<br>Triçorythodas minutus   | _          | -           | _             | • 10                             | )% decline in mean flow; 57% (                        | decline in pe  | eak flow |
| Ameletus sp.                          |            |             | -             | 2                                | 2) <1 1 <1                                            |                |          |
| Unidentified species                  | -          | -           | , - · ·       |                                  | - 1 <1<br>(0-1)                                       |                |          |
| Total Ephemeroptera                   | (5-8)      | 7<br>(5-11) | 28<br>(12-56) | 26 22 93<br>(19-38) (16-35) (62- | 21 65 29 6 30<br>119) (10-31) (26-130) (18-42) (2-10) | SEP            |          |

### We need your knowledge

### **Questionnaire: salmonflyproject.org/citizen-science**

| Stakeholder Questio                                                            | nnaire               |  |
|--------------------------------------------------------------------------------|----------------------|--|
| Please answer the questions below to inf insect declines on your local waters. | orm us about aquatic |  |
| Full Name*<br>Given and Surname                                                |                      |  |
| Age*                                                                           |                      |  |
| What best discribes you*<br>select all that apply                              |                      |  |
| fisherman                                                                      |                      |  |
| guide                                                                          | 0                    |  |
| birder                                                                         | 0                    |  |



### Insect declines?

### Where?

### What species?

### Potential causes?



# Historical data comparisons Citizen science observations New monitoring programs













# Changes in hatch timing?



| INSECTS             |              | SIZE   | J | F | м | A | м | J | J | Α | s | 0 | N | D |
|---------------------|--------------|--------|---|---|---|---|---|---|---|---|---|---|---|---|
| Black Midge         | Midge        | 18-24  |   |   |   |   |   |   |   |   |   |   |   |   |
| Capnia              | Stonefly     | 16-18  |   |   |   |   |   |   |   |   |   |   |   |   |
| Nemoura             | Stonefly     | 14-16  |   |   |   |   |   |   |   |   |   |   |   |   |
| Blue Wing Olive     | Mayfly       | 16-22  |   |   |   |   |   |   |   |   |   |   |   |   |
| Skwala              | Stonefly     | 8-12   |   |   |   |   |   |   |   |   |   |   |   |   |
| Western March Brown | Mayfly       | 12-14  |   |   |   |   |   |   |   |   |   |   |   |   |
| Mother's Day Caddis | Caddis       | 12-16  |   |   |   |   |   |   |   |   |   |   |   |   |
| Salmon Fly          | Stonefly     | 4-8    |   |   |   |   | 1 |   |   |   |   |   |   |   |
| Green Drake         | Mayfly       | 10-12  |   |   |   |   |   |   |   |   |   |   |   |   |
| Ants & Beetles      | Terrestrials | Varied |   |   |   |   | L |   |   |   |   | 1 |   |   |
| Golden Stones       | Stonefly     | 6-12   |   |   |   |   |   |   |   |   | 1 |   |   |   |
| Yellow Sallies      | Stonefly     | 14-16  |   |   |   |   |   |   |   |   |   |   |   |   |
| Pale Morning Dun    | Mayfly       | 14-18  |   |   |   |   |   |   |   |   |   |   |   |   |
| Pale Evening Dun    | Mayfly       | 14-18  |   |   |   |   |   |   |   |   |   |   |   |   |
| Tan Caddis          | Caddis       | 12-16  |   |   |   |   |   |   |   |   |   |   |   |   |
| Hopper & Crickets   | Terrestrials | 6-14   |   |   |   |   |   |   |   |   |   |   |   |   |
| Spruce Moth         | Terrestrials | 10-12  |   |   |   |   |   |   |   |   |   |   |   |   |
| Tricos              | Mayfly       | 18-22  |   |   |   |   |   |   |   |   |   |   |   |   |
| Hecuba              | Mayfly       | 8-10   |   |   |   |   |   |   |   |   |   |   |   |   |
| Blue Wing Olive     | Mayfly       | 16-22  |   |   |   |   |   |   |   |   |   |   |   |   |
| Mahogany            | Mayfly       | 12-14  |   |   |   |   |   |   |   |   |   |   |   |   |
| October Caddis      | Caddis       | 8-10   |   |   |   |   |   |   |   |   |   |   |   |   |
| Tan Midge           | Midge        | 18-24  |   |   |   |   |   |   |   |   |   |   |   |   |

Streams warming ~ 0.5 °F per decade



### Warming temperatures alter emergence timing and success

### Missoulian Angler

inaturalist.org

# **Naturalist**

Citizen science supported database

>172 million observations

>450,000 species observed

# Naturalist.org

How It Works



Record observations; attempt to identify

Share on iNaturalist.org

Observations validated; data used by scientists









# Observe the hatch, match the hatch, save the hatch

- Distribution models
- Population estimates
- Emergence timing
- Angler self-education



# Historical data comparisons Citizen science observations New monitoring programs









### Twelve monitoring programs





Montana: Bitterroot Big Hole Madison Yellowstone Gallatin Blackfoot Rock Creek **Idaho:** Teton Big Wood

BITTERROOT CHAPTER

**Oregon:** Deschutes

Utah: Ogden

Wyoming: Upper Snake

### Primary goals:

1. Status & trends 2. Drivers 3. Inform management



### 1) Insect status & trends













### **Community metrics:**

Population densities of important species

### **Benefits:**

- Inexpensive; 1/2 the cost of community sampling
- ~ \$1000 per site,
   including analysis
   & reporting

### 2) Drivers of insect declines

| Warmer<br>temperatures<br>(Temperature loggers) | Dewatering<br>levels                         |
|-------------------------------------------------|----------------------------------------------|
| <b>Sedimentation</b><br>(Fine sediment surveys) | Nutrient<br>pollution<br>(Nutrient sampling) |



### Insect sampling

### Habitat sampling

### Preserving samples





All sampling assisted by volunteers

### Insect ID

Insect ID







Insect ID



3) Disseminating results to stakeholders and managers

Popular media and angling magazines



FLY-~ FISHERMAN

### \*Resource managers and restoration practitioners\*



### Monitoring case study

Big Hole River, Montana





### Famous for:

- Big browns & bows
- Native cutthroat and grayling
- Strong hatches & selective trout

### Severe trout declines

### **Southwest Montana Trout Populations Continue Alarming Decline**

The Big Hole, Ruby, Beaverhead, Jefferson, and Clark Fork rivers are seeing severely reduced trout populations. Where are the Montana officials and agencies?

### **Ehe New York Eimes**

### 'Zombie Trout' Unsettle Montana, Long a Fly-Fishing Mecca

Warming waters and other factors along the state's rivers like the Big Hole appear to be contributing to alarmingly low numbers of the state's renowned rainbow and brown trout.

### MIDCURRENT

### **Details on the Big Hole River Trout Decline**





### Severe trout declines

### Brown Trout Density and Biomass Jerry Creek Section Big Hole River



### Monitored by MT FWP



### **Big Hole River Foundation finds declining insects**





Year

Year

Big Hole: Hot and Dewatered





### Maximum monthly temperatures

- Upper river: 72.1°F
- Middle river: 69.2 °F
- Lower river: 73.25 °F

### Summer dewatering levels

- Upper river: **52%**
- Middle river: **50%**
- Lower river: 49%





Fewer salmonflies in warmer and more dewatered reaches

No salmonflies where max summer temps > 75 °F and dewatering > 55%

### Green Drakes



Fewer green drakes in **warmer** reaches

None where mean summer temps = 64 °F and max summer temps = 75 °F

### Mother's Day Caddis



Fewer MD caddis in **warmer** and more **dewatered** reaches.

None where max summer temps = 72 °F and percent dewatering > 55%

### Twelve current monitoring programs & expanding



Montana: Bitterroot Big Hole Madison Yellowstone Gallatin Blackfoot Rock Creek **Idaho:** Teton Big Wood

**Oregon:** Deschutes

Utah: Ogden

Wyoming: Upper Snake

### Streamlining future monitoring programs through TU-partnerships





### **Chapters take the lead**

- Appoint 'Chapter lead' or committee
- Organize training events to learn insect and habitat sampling with SFP
- Organize volunteers
- Lead insect and habitat sampling
- Send samples/data to SFP



Maggie Heumann, Manager of Volunteer Ops

### THE SALMONFLY PROJECT

Monitoring committee and working group



## Thank you

George S. and Dolores Doré Eccles <u>foundation</u>



Want to support our mission? **Donate** at: salmonflyproject.org



